The Pivotal Roles of TIA Proteins in 5′ Splice-Site Selection of Alu Exons and Across Evolution
نویسندگان
چکیده
More than 5% of alternatively spliced internal exons in the human genome are derived from Alu elements in a process termed exonization. Alus are comprised of two homologous arms separated by an internal polypyrimidine tract (PPT). In most exonizations, splice sites are selected from within the same arm. We hypothesized that the internal PPT may prevent selection of a splice site further downstream. Here, we demonstrate that this PPT enhanced the selection of an upstream 5' splice site (5'ss), even in the presence of a stronger 5'ss downstream. Deletion of this PPT shifted selection to the stronger downstream 5'ss. This enhancing effect depended on the strength of the downstream 5'ss, on the efficiency of base-pairing to U1 snRNA, and on the length of the PPT. This effect of the PPT was mediated by the binding of TIA proteins and was dependent on the distance between the PPT and the upstream 5'ss. A wide-scale evolutionary analysis of introns across 22 eukaryotes revealed an enrichment in PPTs within approximately 20 nt downstream of the 5'ss. For most metazoans, the strength of the 5'ss inversely correlated with the presence of a downstream PPT, indicative of the functional role of the PPT. Finally, we found that the proteins that mediate this effect, TIA and U1C, and in particular their functional domains, are highly conserved across evolution. Overall, these findings expand our understanding of the role of TIA1/TIAR proteins in enhancing recognition of exons, in general, and Alu exons, in particular.
منابع مشابه
Multifactorial interplay controls the splicing profile of Alu-derived exons.
Exonization of Alu elements creates primate-specific genomic diversity. Here we combine bioinformatic and experimental methodologies to reconstruct the molecular changes leading to exon selection. Our analyses revealed an intricate network involved in Alu exonization. A typical Alu element contains multiple sites with the potential to serve as 5' splice sites (5'ss). First, we demonstrated the ...
متن کاملiCLIP Predicts the Dual Splicing Effects of TIA-RNA Interactions
The regulation of alternative splicing involves interactions between RNA-binding proteins and pre-mRNA positions close to the splice sites. T-cell intracellular antigen 1 (TIA1) and TIA1-like 1 (TIAL1) locally enhance exon inclusion by recruiting U1 snRNP to 5' splice sites. However, effects of TIA proteins on splicing of distal exons have not yet been explored. We used UV-crosslinking and immu...
متن کاملSplicing repression allows the gradual emergence of new Alu-exons in primate evolution
Alu elements are retrotransposons that frequently form new exons during primate evolution. Here, we assess the interplay of splicing repression by hnRNPC and nonsense-mediated mRNA decay (NMD) in the quality control and evolution of new Alu-exons. We identify 3100 new Alu-exons and show that NMD more efficiently recognises transcripts with Alu-exons compared to other exons with premature termin...
متن کاملThe birth of an alternatively spliced exon: 3' splice-site selection in Alu exons.
Alu repetitive elements can be inserted into mature messenger RNAs via a splicing-mediated process termed exonization. To understand the molecular basis and the regulation of the process of turning intronic Alus into new exons, we compiled and analyzed a data set of human exonized Alus. We revealed a mechanism that governs 3' splice-site selection in these exons during alternative splicing. On ...
متن کاملAlport syndrome caused by a COL4A5 deletion and exonization of an adjacent AluY
Mutation-induced activation of splice sites in intronic repetitive sequences has contributed significantly to the evolution of exon-intron structure and genetic disease. Such events have been associated with mutations within transposable elements, most frequently in mutation hot-spots of Alus. Here, we report a case of Alu exonization resulting from a 367-nt genomic COL4A5 deletion that did not...
متن کامل